Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.380
Filtrar
1.
Opt Lett ; 49(7): 1753-1756, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560854

RESUMO

Current or magnetic field sensing is usually achieved by exploiting the Faraday effect of an optical material combined with an interferometric probe that provides the sensitivity. Being interferometric in nature, such sensors are typically sensitive to several other environmental parameters such as vibrations and mechanical disturbances, which, however, inevitably impose the inaccuracy and instability of the detection. Here we demonstrate a polarimetric fiber optic current sensor based on orbital angular momentum modes of an air-core optical fiber. In the fiber, spin-orbit interactions imply that the circular birefringence, which is sensitive to applied currents or resultant magnetic fields, is naturally resilient to mechanical vibrations. The sensor, which effectively measures polarization rotation at the output of a fiber in a magnetic field, exhibits high linearity in the measured signal versus the applied current that induces the magnetic field, with a sensitivity of 0.00128 rad/A and a noise limit of 1×10-5/H z. The measured polarization varies within only ±0.1% under mechanical vibrations with the frequency of up to 800 Hz, validating the robust environmental performance of the sensor.

3.
Chin Clin Oncol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38600808

RESUMO

The therapeutic landscape of advanced non-small cell lung cancer (NSCLC) has been significantly improved by developing immunotherapy represented by programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitors (ICI). Furthermore, immunotherapy combined with chemotherapy is an essential treatment strategy for driver-negative advanced NSCLC, especially in a population with PD-L1 <50%, and leads to long-term survival in the entire population regardless of the PD-L1 expression status. However, specific challenges must be overcome, including how to use immunotherapy with chemotherapy in clinics. Furthermore, the application of immunotherapy with chemotherapy in populations such as elderly patients and patients with brain metastases, oligometastases, epidermal growth factor receptor (EGFR) gene mutation, anaplastic lymphoma kinase (ALK) gene rearrangements, and other driver gene-positive populations must be further explored. The biomarkers associated with immunotherapy and chemotherapy are still unclear, and the search for predictive biomarkers can contribute toward more precise and personalized immunotherapy. Furthermore, treatment strategies after immunotherapy and chemotherapy resistance are of significant focus clinically, and clinical studies with multiple combination therapy strategies are ongoing. Therefore, based on the reported status of immunotherapy combined with chemotherapy for advanced NSCLC, this study conducted a comprehensive literature review by searching keywords "PD-1 and PD-L1, immune checkpoint inhibitor (ICI), and NSCLC" in MEDLINE, major conferences, and major clinical research projects to elucidate the therapeutic efficacy of immunotherapy combined with chemotherapy as the current first-line treatment approach for various types of NSCLC patients. Additionally, it addresses several pressing challenges associated with immunotherapy combined with chemotherapy, including enhancing treatment response and survival rate in specific patient populations and identifying potential biomarkers.

4.
Biomed Pharmacother ; 174: 116553, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593703

RESUMO

This study is to investigate the effect of SPS on the UC model. An animal model of UC induced by DSS was developed using C57BL/6 mice. The body weight was recorded every day, and the symptoms related to UC were detected. H&E staining, AB-PAS staining and PSR staining were used to evaluate the histopathological changes of the colon. Inflammation and mucosal barrier indicators were detected by qRT-PCR, and the 16 S rRNA sequence was used to detect the intestinal flora. SPS can significantly prevent and treat DSS-induced ulcerative colitis in animals. SPS significantly improved clinical symptoms, alleviated pathological damage, inhibited the infiltration of intestinal inflammatory cells. SPS treatment can protect goblet cells, enhance the expression of tight junction proteins and mucins, inhibit the expression of antimicrobial peptides, thereby improving intestinal barrier integrity. The prevention and treatment mechanism of SPS may be related to the inhibition of STAT3/NF-κB signaling pathway to regulate intestinal barrier function. In particular, SPS also significantly adjusted the structure of intestinal flora, significantly increasing the abundance of Akkermansia and Limosilactobacillus and inhibiting the abundance of Bacteroides. Overall, SPS has a significant therapeutic effect on ulcerative colitis mice, and is expected to play its value effectively in clinical treatment.

5.
Bioresour Technol ; 400: 130679, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588781

RESUMO

Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by âˆ¼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.

6.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591461

RESUMO

The effect of solidified phases on the hot cracking behaviour of a large-size GH4742 superalloy ingot produced using vacuum induction melting (VIM) is investigated in order to improve the quality of the final product. The results show that the solidification order of the ingot is γ matrix, MC carbide, η phase and γ' phase. Among them, the MC carbide and the η phase solidified in the mushy zone. The volume fraction of both the η phase and the MC carbide in the cracked zone is higher than that in the non-cracked zone, and a significant number of η phases are distributed near the hot cracks. The formation of solidified phases not only induces stress concentration at η phase/γ matrix interfaces but also reduces the ability of liquid feeding during solidification, thus promoting hot crack formation. It is believed that by controlling the segregation degree of both Nb and Ti, the volume fraction of η phases and MC carbides can be reduced to prevent hot cracking of the GH4742 superalloy VIM ingot.

7.
ACS Appl Mater Interfaces ; 16(14): 17838-17845, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556984

RESUMO

Changeable substituent groups of organic molecules can provide an opportunity to clarify the antibacterial mechanism of organic molecules by tuning the electron cloud density of their skeleton. However, understanding the antibacterial mechanism of organic molecules is challenging. Herein, we reported a molecular view strategy for clarifying the antibacterial switch mechanism by tuning electron cloud density of cinnamaldehyde molecule skeleton. The cinnamaldehyde and its derivatives were self-assembled into nanosheets with excellent water solubility, respectively. The experimental results show that α-bromocinnamaldehyde (BCA) nanosheets exhibits unprecedented antibacterial activity, but there is no antibacterial activity for α-methylcinnamaldehyde nanosheets. Therefore, the BCA nanosheets and α-methylcinnamaldehyde nanosheets achieve an antibacterial switch. Theoretical calculations further confirmed that the electron-withdrawing substituent of the bromine atom leads to a lower electron cloud density of the aldehyde group than that of the electron-donor substituent of the methyl group at the α-position of the cinnamaldehyde skeleton, which is a key point in elucidating the antimicrobial switch mechanism. The excellent biocompatibility of BCA nanosheets was confirmed by CCK-8. The mouse wound infection model, H&E staining, and the crawling ability of drosophila larvae show that as-prepared BCA nanosheets are safe and promising for wound healing. This study provides a new strategy for the synthesis of low-cost organic nanomaterials with good biocompatibility. It is expected to expand the application of natural organic small molecule materials in antimicrobial agents.


Assuntos
Acroleína/análogos & derivados , Nanoestruturas , Camundongos , Animais , Antibacterianos/farmacologia , Acroleína/farmacologia , Esqueleto
8.
Cell Prolif ; : e13646, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623945

RESUMO

Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.

9.
Vet Res ; 55(1): 52, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622656

RESUMO

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Assuntos
Infecções por Clostridium , Animais , Camundongos , Infecções por Clostridium/veterinária , Clostridium perfringens , Interleucina-6 , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Imunidade Treinada , Fator de Necrose Tumoral alfa/metabolismo
10.
Opt Express ; 32(7): 11726-11736, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571013

RESUMO

A distributed optical fiber magnetic field sensor based on a polarization-sensitive optical frequency domain reflectometer (POFDR) is proposed. It extracts the accumulated Faraday rotation by combining the Stokes vectors and the backward Mueller matrices from the measured states of polarization (SOPs) and obtains the magnetic field component. This method avoids adjusting the input polarization during the magnetic field sensing process. It overcomes the drawback of the conventional POFDR scheme, which requires at least two sets of different input SOPs for each sensing. Finally, the aforementioned effectiveness has been experimentally verified by using a single-mode sensing fiber. The results show that the sensor has good repeatability and linearity. The measurement error of the magnetic field sensor is 19.4 mT. The measured magnetic field variations agree with the applied ones with similarities higher than 0.98.

11.
Sci Adv ; 10(14): eadk0647, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569023

RESUMO

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

12.
Cardiovasc Diabetol ; 23(1): 122, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580969

RESUMO

BACKGROUND: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS: We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS: Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS: EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Camundongos , Animais , Humanos , Histonas , NF-kappa B/metabolismo , Células Endoteliais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metilação , Diabetes Mellitus/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Endotélio , Glucose/toxicidade , Glucose/metabolismo
13.
BMC Public Health ; 24(1): 1017, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609901

RESUMO

BACKGROUND: To provide details of the burden and the trend of the cardiovascular disease (CVD) and its risk factors in adolescent and young adults. METHODS: Age-standardized rates (ASRs) of incidence, mortality and Disability-Adjusted Life Years (DALYs) were used to describe the burden of CVD in adolescents and young adults. Estimated Annual Percentage Changes (EAPCs) of ASRs were used to describe the trend from 1990 to 2019. Risk factors were calculated by Population Attributable Fractions (PAFs). RESULTS: In 2019, the age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR) and age-standardized DALYs rate (ASDR) of CVD were 129.85 per 100 000 (95% Confidence interval (CI): 102.60, 160.31), 15.12 per 100 000 (95% CI: 13.89, 16.48) and 990.64 per 100 000 (95% CI: 911.06, 1076.46). The highest ASRs were seen in low sociodemographic index (SDI) and low-middle SDI regions. The burden was heavier in male and individuals aged 35-39. From 1990 to 2019, 72 (35.29%) countries showed an increasing trend of ASIR and more than 80% countries showed a downward trend in ASMR and ASDR. Rheumatic heart disease had the highest ASIR and Ischemic Heart Disease was the highest in both ASMR and ASDR. The main attributable risk factor for death and DALYs were high systolic blood pressure, high body-mass index and high LDL cholesterol. CONCLUSIONS: The burden of CVD in adolescent and young adults is a significant global health challenge. It is crucial to take into account the disparities in SDI levels among countries, gender and age characteristics of the population, primary types of CVD, and the attributable risk factors when formulating and implementing prevention strategies.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Isquemia Miocárdica , Adolescente , Masculino , Adulto Jovem , Humanos , Doenças Cardiovasculares/epidemiologia , Índice de Massa Corporal , Anos de Vida Ajustados pela Incapacidade , Fatores de Risco
14.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610494

RESUMO

Accurately and effectively detecting the growth position and contour size of apple fruits is crucial for achieving intelligent picking and yield predictions. Thus, an effective fruit edge detection algorithm is necessary. In this study, a fusion edge detection model (RED) based on a convolutional neural network and rough sets was proposed. The Faster-RCNN was used to segment multiple apple images into a single apple image for edge detection, greatly reducing the surrounding noise of the target. Moreover, the K-means clustering algorithm was used to segment the target of a single apple image for further noise reduction. Considering the influence of illumination, complex backgrounds and dense occlusions, rough set was applied to obtain the edge image of the target for the upper and lower approximation images, and the results were compared with those of relevant algorithms in this field. The experimental results showed that the RED model in this paper had high accuracy and robustness, and its detection accuracy and stability were significantly improved compared to those of traditional operators, especially under the influence of illumination and complex backgrounds. The RED model is expected to provide a promising basis for intelligent fruit picking and yield prediction.

15.
J Nanobiotechnology ; 22(1): 178, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614985

RESUMO

BACKGROUND: Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis. RESULTS: In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation. CONCLUSIONS:  Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.


Assuntos
Aterosclerose , Diabetes Mellitus , Humanos , Animais , Camundongos , 60574 , Células HEK293 , Membrana Celular , Proteínas Tirosina Quinases , Apolipoproteínas E/genética , Nanopartículas Magnéticas de Óxido de Ferro
16.
Sci Total Environ ; 927: 172010, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575020

RESUMO

Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.


Assuntos
Aquicultura , Bivalves , Animais , China , Bivalves/genética , Bivalves/fisiologia , Mudança Climática , Polimorfismo de Nucleotídeo Único , Adaptação Fisiológica/genética
17.
Technol Cancer Res Treat ; 23: 15330338241242637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584417

RESUMO

Background: Endometrial cancer (EC) is the leading gynecological cancer worldwide, yet current EC screening approaches are not satisfying. The purpose of this retrospective study was to evaluate the feasibility and capability of DNA methylation analysis in cervical Papanicolaou (Pap) brush samples for EC detection. Methods: We used quantitative methylation-sensitive PCR (qMS-PCR) to determine the methylation status of candidate genes in EC tissue samples, as well as cervical Pap brushes. The ability of RASSF1A and HIST1H4F to serve as diagnostic markers for EC was then examined in cervical Pap brush samples from women with endometrial lesions of varying degrees of severity. Results: Methylated RASSF1A and HIST1H4F were found in EC tissues. Further, methylation of the two genes was also observed in cervical Pap smear samples from EC patients. Methylation levels of RASSF1A and HIST1H4F increased as endometrial lesions progressed, and cervical Pap brush samples from women affected by EC exhibited significantly higher levels of methylated RASSF1A and HIST1H4F compared to noncancerous controls (P < .001). Receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses revealed RASSF1A and HIST1H4F methylation with a combined AUC of 0.938 and 0.951 for EC/pre-EC detection in cervical Pap brush samples, respectively. Conclusion: These findings demonstrate that DNA methylation analysis in cervical Pap brush samples may be helpful for EC detection, broadening the scope of the commonly used cytological screening. Our proof-of-concept study provides new insights into the field of clinical EC diagnosis.


Assuntos
Neoplasias do Endométrio , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Metilação de DNA , Estudos Retrospectivos , Colo do Útero/patologia , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia
18.
Org Lett ; 26(15): 3304-3309, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38587334

RESUMO

A facile and efficient radical tandem vinylogous aldol and intramolecular [2 + 2] cycloaddition reaction for direct synthesis of cyclobutane-containing benzocyclobutenes (BCBs) under extremely mild conditions without using any photocatalysts is reported. This approach exhibited definite compatibility with functional groups and afforded new BCBs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost, and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.

19.
RSC Adv ; 14(18): 12454-12462, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633498

RESUMO

Fluorinated carbon (CFx) has been extensively served as promising positive electrode material for lithium primary batteries due to its high energy density. However, there are comparatively far less reports about the use of CFx on other battery systems, let alone on the research of aqueous batteries. Herein in this study, we employed CFx as the cathode active for aqueous zinc batteries for the first time and systematically investigated its electrochemical behavior under a series of aqueous zinc-ion electrolytes. As is discovered that the F/C ratio (the x value in CFx) of CFx have significant effects on the electrochemical performance of aqueous Zn/CFx batteries. Specifically, CF0.85 exhibits excellent electrochemical property with delivering a remarkable discharge capacity of 503 mA h g-1 and energy density of 388 W h kg-1 (at a current rate of 30 mA g-1 under temperature of 25 °C), much better than several other CFx electrode with F/C ratio of 0.70, 0.95, and 1.10, respectively. Besides, it also exhibits decent temperature performance with discharge capacities of 550 mA h g-1 at 50 °C and 460 mA h g-1 at 0 °C under current density of 30 mA g-1. Furthermore, the electrochemical discharge mechanism based on conversion reaction was further uncovered by applying XPS, XRD, SEM and EDS elemental analysis characterization techniques. In conclusion, these results demonstrate the potential application value of CFx in aqueous zinc primary batteries.

20.
Front Microbiol ; 15: 1307729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633695

RESUMO

Background: Observational studies have reported an association between the gut microbiota (GM) and hyperemesis gravidarum (HG). However, the causal relationship is unclear. In this study, Mendelian randomization (MR) was used to infer causal relationships between GM and HG. Methods: Inverse-variance weighted MR was performed using summary statistics for genetic variants from genome-wide association studies (GWAS). Sensitivity analyses were performed to validate the MR results and assess the robustness of the causal inference. Reverse MR analysis was performed for bacterial taxa that were causally linked to the HG risk in the forward MR analysis to evaluate reverse causality. Results: MR analysis revealed that the genera Defluviitaleaceae UCG011, Ruminococcus1, Ruminococcus2, Turicibacter, and unknowngenus and phylum Verrucomicrobiota are positively associated with the risk of HG. Additionally, the genus Coprococcus2 was related to a decreased risk of HG. Sensitivity studies validated the strength and reliability of the link between the composition of the GM and HG. No evidence for reverse causality from HG to identified bacterial taxa was found. Conclusion: Our MR analysis provided novel insight into the association between GM and HG. In particular, our results indicated that targeting the GM could serve as an effective therapeutic strategy for HG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA